Введите задачу...
Линейная алгебра Примеры
Этап 1
Этап 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Этап 1.2
Умножим каждую строку первой матрицы на каждый столбец второй матрицы.
Этап 1.3
Упростим каждый элемент матрицы путем перемножения всех выражений.
Этап 2
Write as a linear system of equations.
Этап 3
Этап 3.1
Вычтем из обеих частей уравнения.
Этап 3.2
Заменим все вхождения на во всех уравнениях.
Этап 3.2.1
Заменим все вхождения в на .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Упростим .
Этап 3.2.2.1.1
Упростим каждый член.
Этап 3.2.2.1.1.1
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.2
Умножим на .
Этап 3.2.2.1.1.3
Умножим на .
Этап 3.2.2.1.2
Вычтем из .
Этап 3.3
Решим относительно в .
Этап 3.3.1
Перенесем все члены без в правую часть уравнения.
Этап 3.3.1.1
Вычтем из обеих частей уравнения.
Этап 3.3.1.2
Вычтем из .
Этап 3.3.2
Разделим каждый член на и упростим.
Этап 3.3.2.1
Разделим каждый член на .
Этап 3.3.2.2
Упростим левую часть.
Этап 3.3.2.2.1
Сократим общий множитель .
Этап 3.3.2.2.1.1
Сократим общий множитель.
Этап 3.3.2.2.1.2
Разделим на .
Этап 3.3.2.3
Упростим правую часть.
Этап 3.3.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.4
Заменим все вхождения на во всех уравнениях.
Этап 3.4.1
Заменим все вхождения в на .
Этап 3.4.2
Упростим правую часть.
Этап 3.4.2.1
Упростим .
Этап 3.4.2.1.1
Упростим каждый член.
Этап 3.4.2.1.1.1
Сократим общий множитель .
Этап 3.4.2.1.1.1.1
Вынесем множитель из .
Этап 3.4.2.1.1.1.2
Вынесем множитель из .
Этап 3.4.2.1.1.1.3
Сократим общий множитель.
Этап 3.4.2.1.1.1.4
Перепишем это выражение.
Этап 3.4.2.1.1.2
Перепишем в виде .
Этап 3.4.2.1.2
Упростим выражение.
Этап 3.4.2.1.2.1
Запишем в виде дроби с общим знаменателем.
Этап 3.4.2.1.2.2
Объединим числители над общим знаменателем.
Этап 3.4.2.1.2.3
Вычтем из .
Этап 3.5
Перечислим все решения.